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DESIGNS OF EXPERIMENTS AS TELESCOPING SEQUENCES OF BLOCKS
FOR OPTIMUM SEEKING (AS INTENDED FOR ALLOY DEVELOPMENT)
by Arthur G. Holms

Lewis Research Center

SUMMARY

Box-Wilson methods of design and analysis are proposed for optimum seeking experi-
ments. These methods begin with a first-order polynomial equation fitted to empirical
data to predict those modifications that should result in the greatest improvement. The
predictions are usually tested with new experiments and a new first-order prediction
equation is fitted. If the vicinity of the optimum has been reached, the response function
will be curved and a second-order equation is fitted to a much larger experiment.

Ideally, the designs of the experiments should have two attributes:

(1) If a minimum experiment to fit a first-order equation has been performed and the
model is thought to be of doubtful validity, a larger experiment should be performed that
will contain the earlier experiment as a nucleus. In this way a ''telescoping'' sequence
of experiments might be performed up to the largest size envisioned in Box-Wilson
methods, namely, the experiment to estimate the full second-order equation.

(2) The constants of the larger equations should be estimated without bias by uncon-
trolled changes that may have occurred in the material or equipment between the perform-
ances of the experiments. Detailed designs of experiments that possess these attributes
are presented.

The designs consist of full and fractionally replicated two-level factorial experiments
with four to eight factors. The sizes of the experiments include 8, 16, 32, and 64 treat-
ments.

INTRODUCTION

In seeking optimum processing conditions or optimum compositions, investigators in
many fields of technology find that the experimenting is intrinsically expensive and time
consuming. For example, a program of high-temperature alloy development consists of



melting experimental alloys of relatively expensive metals with the use of sophisticated
equipment (such as vacuum furnaces) followed by the fabrication and long-time testing of
specimens. The alloys typically contain many constituents, and information on the joint
effects of changes in the amounts of these constituents can be obtained only from tests of
a large number of different melts. For this reason and because the process often intro-
duces large experimental error, the most reliable of minimum-size statistically designed
experiments are needed for the economic achievement of valid conclusions.

A series of small experiments could be performed to find those conditions (such as
composition levels of the elements) that would optimize response (achieve maximum
strength). Methods for designing particularly efficient experiments for this purpose are
described in reference 1 and are known as Box-Wilson methods. Illustrations of their
use in alloy development are described in reference 2.

The Box-Wilson methods assume that the optimum seeking begins with experiments
chosen to estimate the constants of a first-order equation for the response. This phase
of the experimenting is called the method of steepest ascents. When the optimum condi-
tion is approached, the first-order model is no longer applicable, and the constants of a
second-order model must be estimated from larger experiments. This phase is called
the method of local exploration. The second-order model contains expressions called
interactions and they represent the fact that the response to one independent variable has
become dependent on the level of one or more other independent variables.

The full factorial experiment where the response is observed for all combinations of
the independent variables provides complete estimates of all possible interactions. How--
ever, such complete information is seldom required in the method of local exploration,
and even less information is needed for the method of steepest ascents. For either the
method of steepest ascents of the method of local exploration, a fraction of the full frac-
torial experiment might be all that is required, and such a design is called a fractional
replicate.

Parts of an experiment are sometimes performed in a sequence over differing time

segments, over differing batches of raw material, or over differing pieces of equipment.
These differing conditions are assumed to affect the response from one part to the next
by amounts that are not readily predicted or controlled; however, the experimental units
within the part are assumed to be uniform with respect to the conditions. The responses
to changes between the parts of the experiment are called block effects. Experiments
that are designed to estimate the constants of the model equation without contamination
from block effects are called orthogonally blocked designs.

A discussion of preferred designs of experiments for seeking optimum conditions was
presented by Box and Hunter (ref. 3) in which the use of sequences of blocked fractional
factorial designs was introduced, but exact details of the combinations of levels of the in-
dependent variables (treatments) were not presented. A large collection of specified
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treatments for blocked fractional factorial designs is given by the National Bureau of
Standards in reference 4; however, it does not discuss the choosing of detailed designs
from reference 4 to meet the objectives of reference 3. As a matter of fact, the require-
ments of reference 3 seldom lead to designs in reference 4. The designs that should be
used also depend on the particular situations facing the experimenter in addition to the re-
quirements of reference 3.

The purpose of the present report is to furnish designs similar to those in refer-
ence 4 that will meet the objectives of reference 3 and which will also be appropriate for
the particular situations occurring in alloy development. Conceivably, many other devel-
opment situations could lead to the same family of designs.

The cost of experimental units (melts) in alloy development is very high and their
number should be minimized. A central feature of the use of blocked designs in optimum
seeking experiments is that a single block might be used in the method of steepest ascents.
When the method of local exploration is invoked, the experimenting might be continued by
using the block already completed as the first block of that series of blocks required for
the method of local exploration. The present report therefore presents sequences of
blocked designs such that the first block is an efficient design for the method of steepest
ascents and such that completion of the blocks will result in an efficient design for the
method of local exploration. Such sequences will be called telescoping sequences of de-
signs. Their design has been discussed briefly in reference 5.

The scope of the investigation has been limited to situations involving four to eight
factors, and the sizes of the experiments have been limited to 8, 16, 32, and 64 treat-
ments.

The point at which the decision is made to shift from the method of steepest ascents
to the method of local exploration is critical because of greatly increased sizes of experi-
ments required by the method of local exploration. In essence, the decision requires
tests of significance for the coefficients estimated in the method of steepest ascents.
Procedures appropriate to such tests are discussed in references 6 to 9.

SYMBOLS

b number of blocks
E() value of () if averaged over infinite number of observations
g number of independent variables (factors)

h fractional replicate contains 1 /2h times number of treatments performed in full
two-level factorial experiment

i index number for trials



i,k index number for independent variables

l g-h

R resolution level

Sj scale factor (eq. (3))

U response (dependent variable)

Xj vector giving levels of xij’ i=1,...,n

Xy standardized level of gj defined by eq. (3)

Y response (dependent random variable)

y response (observed variate)

B unknown population parameter

€ error

g]. independent variable, j=1, . . ., g

02 variance of €

@ function of independent variables giving E(Y)
n

Z () termsin () summedas i variesoverl, 2, ..., n
i=1

BOX-WILSON METHODS AND BOX-HUNTER DESIGNS

This section presents a selective review of the Box-Wilson methods of reference 1
together with a selective review of the Box-Hunter designs of references 3 and 10. An
extensive bibliography of these subjects is presented in reference 11. This review is se-
lective in that it presents only those concepts of references 1, 3, and 10 that provide
background for the contributions of the present investigation, which is discussed in terms
of alloy development involving four to eight independent variables.

Model for Response

Assume that with every observation of response Y there is some error € and, that
aside from the error, the response is some unknown function ¢ of the imposed condi-

tions gl, . e ey gg:




. Y=¢kyp - - k) +e

If the error is averaged over a very large (infinite) number of observations, such

averaging is represented by E(€) = 0, that is,
E(Y) = (p(gl, s v i':‘g) (1)

Assume also that the observation error variance is some constant 02, that is,

E(e?) = o2 )
In some experimentation 02 might not be constant with changes in 51, e ..y & g In
such cases, there often is a transformation of Y that results in approximately constant
error variance. For example, if U were time to failure, then in many cases Y =1log U
would have an approximately constant error variance.

Equation (1) expresses the belief that the response to be optimized is some definite
but unknown function of the variables that can be controlled.

An approximation to equation (1) is estimated from experiments and the estimating
function is used to predict conditions of the "51’ R g that should give a response
superior to any already observed. The predictions are then checked experimentally. If
they are found to be invalid, some new experimentation is performed to improve the ap-
proximation function.

The approximating function does not have to provide a map over the entire ranges of
all the variables. All that is needed is a starting point for the experimentation and a pro-
cedure that will lead through a short sequence of experiments to a point at which there is
high confidence that the optimum is satisfactorily close.

Sequential Experimentation

Experiments associated with alloy development are usually accompanied by two cir-
cumstances:

(1) The experimentation is expensive.

(2) The experimenter has a large body of knowledge that is more or less applicable.

These two circumstances dictate that the work should proceed by small stages where
the experimenter alternately

(1) Uses his prior knowledge to plan the next stage of experimentation



(2) Performs the experiment and uses the results to revise previously held hypoth-
eses and then suggests new hypotheses to be tested by appropriate new experi-
ments

A variety of useful techniques is needed that consist of

(1) Efficient strategies of experimentation
(2) Infformative procedures of data reduction so that, at each stage of the experiment-

ing, the experimenter will know

(a) What trends are indicated
(b) How clearly these trends are distinguished from random error

Notation for Conditions of Independent Variables

R g be the controlled variables. Designate the serial number of each

Let gl, ..
n. Define standard levels for

trial and observation by the subscript i, i=1, 2, . . .,
the variables by
Eoo- &, .
X;; = ij j i=1, ..., n (3)
L S. i=1, ...,

For example, if £y were percentage tungsten and two levels were investigated
(e.g., 10 and 20 percent) and if percentage boron gz were investigated at two levels

(0 and 0. 4 percent), then

El -10+20_ 15 percent
2

22 0+0.4_ 0.2 percent
2

The coordinates El and Ez locate the design center of the experiment in the orig-
inal or natural units. The quantity S. is a scale factor that is adjusted so that equa-
tion (3) will represent the upper levels with +1 and lower levels with -1.

For X4 = +1:

20 -~ 15




For x,, =-1:

il
10 - 15 = -1
5
For Xi = +1:
0.4 - 0.2=+1
0.2
For Xi9 = -1:
0.0-0.2 = -1
0.2

that is, the scale factors are S1 =5 and S2 = 0,2. (The design center is at 15 percent
tungsten and 0. 2 percent boron for which X = 0 and Xi9 = 0).

The design of the experiment is required to be balanced. This requirement means
that on summing over all n conditions (treatments),

n
Z X5 =0 4

for all independent variables, j=1, ..., g.

Model Fitting

The knowledge gained from the experiments is expressed quantitatively by equations
with constants that have been fitted to the data. The equations are then used to suggest
values of the independent variables that might give responses superior to those already
observed. The model fitting begins with an attempt to estimate equation (1). If there is
no prior information about the form it should take, a polynomial approximation is as-
sumed, because the method of least squares is a highly effective method of fitting poly-
nomial equations to empirical data. If prior information justifying some particular func-
tional form is available, the particular form could be used so that a polynomial equation
in transformed variables is fitted to the data. In the standardized variables of equa-
tion (3) the polynomical approximation of equation (1) is
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E(Y) = Bo + lel + Buxl + Blllxl ...

+ Bzxz + Bzzxg + Bzzzxg +. ..

2 2
+BgXg + B + PogXg + o -

+ Bllexz + Bl?’xlx3 +. ..

2 2
+[3112x1x2 +3113X1X3 +o .
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2 2.2
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... (5)

If the number of variables g is large, the number of terms needed in equation (5) is
extremely large, especially if the model fitting is to be valid over a wide range of the in-
dependent variables. The range of the independent variables is assumed to be restricted,
so that for any one experiment, no terms higher than second degree will be needed:

E(Y) = Bg + ByXy +BoXg +. . . +ngg
2 2 2
+ Bllxl +322x2 +. .. ﬁggxg
+Bro¥(Xg + BygXXg +. . . + By XXy

+ 623x2x3 +a. .+ Bzgxzxg

+. 00

+Pg-1,¢%g-1%g ©)




In other words, the path over which the experimenter travels to reach an optimum
point might extend over very wide ranges of the independent variables; however, the
groping along this path proceeds in small stages and some version of equation (6) is newly
evaluated at each stage.

""One At a Time"' Experimenting

Two strategies for the empirical attainment of optimum conditions are illustrated by
figure 1. The true response on two variables is shown by the contour lines, but, of
course, the experimenter begins with essentially no knowledge of these lines.

The '""one at a time!' strategy of experimenting is illustrated by the lines with Roman
numerals in figure 1. At constant Xg, X4 is varied along line I until the maximum of Y
on line I is attained. At this maximum on X4, the quantity Xy is varied along line II to
find the maximum which occurs at the intersection of lines I and III, This intersection
is not necessarily the maximum point, but merely the maximum on line II. Only very
precise experimentation on line I could lead to a new value of Xy at line IV; that is,
the response is so flat along line IO that random error could easily hide the location of
the true maximum along line III. Only very precise experimenting could lead through the
many cycles of variation of Xy and X along lines IV, V, and so forth, needed to reach
the true optimum.

Method of Steepest Ascents

The method of steepest ascents assumes that the starting point is sufficiently far
away from the optimum point that the response function is not particularly curved, as at
A of figure 1. In particular, assume that the response function can be represented by a
first-order function of the independent variables, so that the response is represented by
the equation

E(Y)=Bo+31X1+32X2+~--+Bng )]

For g independent variables there is a need to evaluate (estimate) g + 1 parame-
ters so that at least g +1 trials under independent conditions must be performed to give
that many observations of Y.

With the assumption that the parameters of equation (7) have been estimated and that
the linear equation is decided to be adequate, the direction (with respect to the coordi-
nates, fig. 1) that produces the steepest response of Y can be determined (ref. 12).



Assume that this direction is the direction in which the conditions of experimenting are
changed as indicated by points numbered 1, 2, 3, and 4 of figure 1.

Elect the maximum point indicated by such a series to be the starting point (design
center) for a second experiment capable of again evaluating the parameters of equation (7).
This usage of equation (7) to determine directions of improved response gives the method
its name of steepest ascents. Steepest ascents, by itself is obviously self defeating, be-
cause as the maximum point is approached, the surface curvatures (as at point B of
fig. 1) will prevent equation (7) from being an adequate approximation to the true surface.

Decision Making

The strategy of steepest ascents, in addition to fitting equation (7), must provide ad-
ditional information that will eventually show that equation (7) is no longer valid. This
information must come from a few more observations than the minimum g + 1. Each ad-
ditional observation provides one additional ''degree of freedom'* and these additional de-
grees of freedom are used in some sense as a measure of ''lack of fit.'' Methods that
can be used for testing the validity of equation (7) are discussed in references 6, 7, 8,
and 9.

Method of Local Exploration

If the lack of fit is excessive, appropriate experiments will be needed to evaluate all
the coefficients of equation (6). For experiments with four to eight independent variables
(factors), the important designs of experiments are known as the hypercube and the star
designs. The terminology used is illustrated by figure 2. If all combinations of all fac-
tors are investigated at two levels, there results 28 observations and the experiment is
called a hypercube design, If 1 /2h of such treatments are performed, the experiment
is called a fractional replicate. It contains Zg’h observations on independent treat-
ments. Whereas a severely fractionated two-level fractorial experiment is adequate for
estimating the coefficients of equation (7), a less severely fractionated (larger) experi-
ment is needed to estimate additionally the cross product coefficients B.., i #j of equa-
tion (6).

The estimation of the coefficients Bii of the quadratic terms requires the perform-
ance of experiments with points on the coordinate axes of independent variables at dis-
tances p s from the design center; that is, with coordinates

ij’

10

a



The design is called a star design (fig. 2). If the 2g-h design is augmented by the
star design plus at least one additional point at the design center, the composite experi-
ment becomes efficient for estimating all the parameters of equation (6). (The optimal
value of p s and the optimal number of center points are discussed in ref. 3).

With the parameters of equation (6) estimated by the method of least squares, the
usual mathematical methods can be used to find the point of horizontal tangency. This
point might be a maximum, a minimum, or a saddle point, If the point of horizontal tan-
gency is located beyond the range of the conditions of the experiment, the second-order
model (eq. (6)) is probably not valid for such an extrapolation and new experiments must
be performed in the direction of the indicated maximum.

An invaluable aid in drawing conclusions from the fitted equation (6) is the method of
canonical reduction (refs. 1, 10, and 12). Briefly, the method shows whether the point
of horizontal tangency is a maximum, a minimum, or a saddle point. For problems of
more than a few variables, the point of horizontal tangency is usually some kind of saddle
point from which the experimenter might proceed along one or both of two rising ridges.
Physical considerations may dictate that only one of the ridges should be followed, but
otherwise both directions should be explored, because the second-degree equation may
have oversimplified the true situation.

Total Box-Wilson Process

In summary, the total process of Box-Wilson methods, as visualized herein for alloy
development, is exhibited by figure 3. The existence of experimental error can lead to
decision errors in answer to the questions, ''Is the first-order model adequate?'' and
'"Has a true maximum or acceptable solution been attained?'* Accordingly, the best
available statistical techniques should be used at these two branch points, The style of
the diagram of figure 3 might indicate to some experimenter that his insight and judg-
ment are to be replaced by a computer. Nothing could be further from the truth. In the
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terminology of equation (3) it is the experimenter who must decide the following:

(1) He must decide which factors should be varied. They are then labeled
Egp oo v £ g In taking this step, there should be no intention that other variables will
be added later. The full list of potential factors should be incorporated into the initial
experiments so that interaction effects among the factors can be observed. Of course,
any factors that prove to be nonsignificant may be dropped from the investigation at such
time as their nonsignificance has been clearly demonstrated.

(2) He must decide in what way the factors should be varied. For example, if Y
were the velocity of a fluid, then €1 might be the square root of a differential pressure.
In other words, the experimenter should attempt to define the gj so as to achieve a lin-
ear response of Y on the gj. In alloy development, the element additions are some-
times associated with a '"diminishing returns'' phenomenon so that very small quantities
of a specific element produce large changes in strength, whereas large quantities produce
relatively small changes. In such cases, setting ‘Ej equal to the logarithm of the per-
centage composition might be an advantage. After deciding on what linearizing transfor-
mation to use, the experimenter would then pick the levels of the variables in the manner
of equation (3).

(3) He must decide the starting region of experimentation. This is specified by the
selection of the design center —g—l, Ez, . ey Eg .

(4) He must decide by how much the factors should be varied; that is, the experi-
menter chooses the magnitude of the difference between £ ij and Ej, which determines
the magnitude of the scaling constant Sj of equation (3).

After these decisions have been made, the variables are standardized to the x-values
of equation (3) and such experimental points are included as will satisfy equation (4) to-
gether with other criteria that have been advanced in reference 3 and in the present inves-
tigation.

The question of the location of star points and the question of the number of center
points is dealt with in reference 3. The present investigation is limited to details of the
design of the fractional hypercube experiment to estimate the parameters of equation (7)
and to details of the enlarged hypercube experiment to estimate the interaction parame-
ters of equation (6). The use of Yates' method (ref. 12) will be assumed for estimating
the linear and interaction coefficients. Of course, more sophisticated methods would be
needed to fit all the coefficients of equation (6) following the acquisition of data corre-
sponding to the star and center points.

Two or More Dependent Variables
Problems involving two or more dependent variables are reasonably treated by
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determining response functions for all such variables. Typically, one of them will de-
serve to be optimized while the others need merely be controlled. If, for example, the
dependent variables are rupture life and ductility, the investigator might specify a mini-
mum ductility and then maximize the rupture life under such a constraint. Contour lines
of rupture life and ductility plotted on coordinates consisting of the independent variables
(composition, for example) would show how to reach a condition maximizing rupture life
at the specified ductility.

Two or More Maximum Points

A serious error could be made in locating the optimum point if the response function
contained two or more significantly unequal maximum points and if these points were suf-
ficiently distant from each other so that the larger maximum was not discovered. K the
possibility of two or more maximum points is suspected from prior physical considera-
tions, then early experimenting should consist of factorial experiments on more than two
levels; the experimentation should be on a grid of points spanning the entire range of in-
terest of the independent variables. Such experimentation would be far more expensive
than the Box-Wilson experimenting, which only defines a path leading to a single optimum
condition.

CRITERIA FOR SELECTING DESIGNS OF EXPERIMENTS

Telescoping Designs

The experiment used to estimate the coefficients of the first-order model (eq. (7) in
the method of steepest ascents) might or might not be large enough to estimate all the
two-factor interaction coefficients of the second-order model (eq. (6) in the method of
local exploration). If the factorial experiment was severely fractionated for the first-
order model, then additional fractions of the full factorial experiment must be performed
for the second-order model. As already mentioned, the additional fractions are ideally
performed as parts of a blocked experiment, which means that the block effects will not
decrease the accuracy of (will be orthogonal to) the estimates of the first-order and inter-
action coefficients. When a sequence of orthogonal blocks is designed so that observa-
tions from the first block may be used to estimate the coefficients of a simple model, and
then be retained and combined with observations from new blocks so that all acquired ob-
servations are used cumulatively to estimate models of successively greater and greater
generality, the blocks will be said to form a telescoping design.
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The experiments in the method of steepest ascents are typically performed at more
than one design center before the more elaborate experiments are performed to estimate
the interactions for the method of local exploration. At any given design center, the ex-
perimenter seldom has complete prior information as to just which interactions need to
be evaluated. Economy in the total program is therefore to be achieved if the experi-
menter can ''feel his way'' into the more complex models. This is to be done with the
use of the telescoping sequences of designs.

Resolution Levels

The factorial experiment with conditions fixed at just two levels of g independent
variables (factors) permits the estimation of parameters representing the grand mean
over the experiment, the first-order effects of the factors, and the results of factors in-
teracting two at a time, three at a time, and in all combinations upto g ata time. Ifa
fraction 1/2h of this experiment is performed, not all these parameters can be esti-
mated. True response functions in physical investigations are typically smooth enough
that the higher order coefficients of an approximating polynomial may be assumed to be
negligible over a small enough range of the experimentation. Accordingly, only the lower
order coefficients need be estimated; however, they are allowed to be biased by (con-
founded with) coefficients of higher order interactions because such coefficients are as-
sumed to be negligible.

Let the number of factors in the highest order interaction requiring estimation be e,
and let the number of factors in the lowest order interaction with which it is allowed to be
confounded be c; then the required resolution R of the design is defined (ref. 13) to be

R=e+c¢c

As a minimum requirement on the first-order experiments, the coefficients will be
allowed to be confounded with only the coefficients of two-factor or higher order interac-
tions. This requires that R=e +c=1+2 = 3. A somewhat improved design occurs if
the first-order coefficients are estimated clear of two-factor interactions. This requires
that R=e+c=1+3 =4,

For the interaction experiments, the estimates of two factor interaction coefficients
should be allowed to be confounded only with higher order interaction coefficients. This
requiresthat R=e+c=2+3 =5,

The design of the interaction experiment (of resolution 5) is now specified to be
blocked into b blocks such that any one block will provide a design of resolution 3 for
the first-degree model. As a consequence of this requirement, the experimenter may
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switch at any time from the method of steepest ascents to the method of local exploration
by completing the b - 1 uncompleted blocks of the resolution 5 experiment.

Occasions could arise in which the experimenter would not wish to proceed immedi-
ately from a minimum-size first-order design to the design for estimating all interaction
coefficients. For example, a design of only eight treatments hardly provides enough in-
formation to test the validity of the first-order model. The performance of a second
block of eight treatments could lead to a much better decision. Also, the experimenter
may have prior knowledge that certain interactions are negligible so that he can stop
short of the experiment that estimates all two-factor interactions. For these reasons,
the designs and parameter estimates are given for such intermediate size experiments.

Sizes of Experiments

The lower limit of the size of the interaction experiment has been set at 16 experi-
mental units. The presumption is that experiments with less than 16 experimental units
are too small for any determination of statistical validity. With 16 treatments the
smallest number of factors in the (efficient) unreplicated experiment is four, and this
will be the lower limit on the number of factors for which designs will be presented.

For the interaction experiment, the number of first-order and two-factor interaction
coefficients needing estimation (aside from the grand mean) includes the g first-order
coefficients and the g(g - 1)/2 two-factor interactions for a total of g(g + 1)/2. The
number of treatments is Zg'h and subtracting one degree of freedom for the grand mean,
the number of degrees of freedom available for estimating these coefficients is 28-h _ 1.
The ratio of the number of coefficients estimated to the available degrees of freedom has

been defined by Daniel (ref. 5) as the efficiency of the design:

Efficiency = _8@& *1)
2(287 0 _ 1)

As given in reference 5, the efficiency of minimum size resolution 5 designs varies
with the number of factors as follows:

Number of | Number of | Efficiency || Number of | Number of |Efficiency
factors |treatments factors |treatments
5 16 1. 00 11 128 0.52
6 32 .68 12 256 .31
7 64 .44 13 256 .36
8 64 . 56 14 256 .41
9 128 .35 15 256 i
10 128 .43
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The Zg'h designs possess the desirable properties of rotatability and orthogonal
estimates of first-order and two-factor interaction coefficients as discussed in refer-
ence 3. These properties can reasonably be insisted upon where the number of treat-
ments is not excessive (64 or less) and where they are being effectively utilized. (The
preceding table shows generally low efficiencies for Zg'h designs of resolution 5 for
nine or more factors). The use of more efficient designs for nine or more factors is
highly desirable and the resulting sacrifice of rotatability and orthogonality might be tol-
erable because the number of treatments would still be quite large. Such designs are
discussed in reference 14 and also in reference 15. The present investigation is limited
to the Zg'h designs of resolution 5, and as indicated by the preceding discussion, such
designs are appropriate for situations involving up to eight factors. The largest number
of treatments is therefore limited to 64.

The preceding limitation to experiments with 16 to 64 treatments does not count the
star and the center points used in estimating the coefficients of the quadratic terms. The
number of such experimental units depends on the eriteria used to decide the number of
center points, but with g factors, the number of these extra experimental units is rela-
tively small, being only slightly in excess of 2g + 1.

The fractional factorial first-order experiment on four factors requires a minimum
of eight treatments, whereas the fractional factorial first-order experiment with eight
factors requires a minimum of 16 treatments. Correspondingly, the sizes of the blocks
are limited to 8 and 16 treatments.

The Principal Block

In some cases the experimenter will prefer to include a condition that he calls
""'standard conditions'' in the first block of a blocked experiment. Typically, an experi-
menter would choose to have all independent variables at their low levels. In any event,
the experimenter is free to invert scales so that the treatment he elects as standard con-
ditions will contain all independent variables at naturally or at artificially defined ''low'’
conditions. The designs to be presented have all been arranged such that the first block
will contain the treatment with all factors at their low conditions. This block is called
the principal block.

PROPERTIES OF RECOMMENDED DESIGNS

Tabular Presentations

In general, the estimation of all the coefficients of equation (6) is to be done by ma-
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trix inversion methods (ref. 16) or by a modified Doolittle method (ref. 17). Such com-
putations are usually performed by a large programed machine or by a skilled operator
using a desk calculator. On the other hand, the estimation of just the coefficients of the
linear and interaction terms can be performed very simply by a procedure called Yates'
algorithm (ref. 12, pp. 263-265). Its use permits the rapid evaluation of experiments
performed in the method of steepest ascents and also for those experiments performed to
evaluate interactions prior to the introduction of star points.

A necessary condition for using Yates' algorithm is that the observations of the frac-
tional hypercube experiment must be written in Yates' order. A special notation is of as-
sistance in establishing Yates' order. The notation is defined in terms of treatment com-
binations. The independent variables are named A, B, C, D, E, F, and so forth. For
two levels of such a variable the symbol 1 is used for the lower level, and the associ-
ated lower case letter is used for the upper level. A particular treatment is then repre-
sented by the product of these symbols; for example, the treatment A, lower; B, upper;
C, upper; D, lower; E, lower; F, upper; would be written

1bcllf = bef

The standardized variables assign a +1 to a variable at the upper levelanda -1 toa
variable at the lower level, and the treatment would be specified by such coordinates.
The preceding example with Xy associated with A, Xy with B, and so forth, is

(xl, X9, Xg, X4, Xg, x6) =(-1, 1, 1, -1, -1, 1) = bef

With observations identified by the treaments that produced them, the Yates' order for
observations can be indicated by stating their order using the Yates' notation for treat-
ments as in the first column of table 1. The tabular presentations of the designs will give
the treatments in Yates' order.

Application of Yates' algorithm to the Zg'h observations produces Zg‘h numbers
called contrasts, and division of the contrasts by 98-h produces 28-h estimates of the
parameters of equation (5). Just which parameters are estimated depends on the details
of the design. The techniques used to establish the details of the designs and to identify
the parameters estimated are given in the appendix. The details of the design cause
some of the parameters to be aliased with each other; that is, some of the parameters
cannot be separately estimated but only a linear combination of them is equal to a con-
trast. However, with respect to all the parameters of equation (5), only the single-
factor and two-factor interaction coefficients are of direct interest.

In the case of the first-order experiments, if a two-factor interaction coefficient is
aliased with a single-factor coefficient (if the sum of a two-factor coefficient and a single-
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factor coefficient is estimated by a single contrast), then the two-factor coefficient is
assumed to be zero. H a contrast does not estimate any combination of two-factor or

lower order coefficients, the contrast will be given a name by listing the lowest order set .

of interaction coefficients that it does estimate. For example, table 17 lists a treatment
bede, and the Yates' computation would give an estimator of 323 4 in the same row.
From table 15 the full set of aliased parameters can be shown to be [3234, -31245, Bl 47
5126’ -33457, '62356’ ﬁ367’ and -Bl 567 of which the lowest order set is 3234, +Bl47’
"'3126’ +B367' Those parameters, the estimates of which are confounded with block ef-
fects, will be identified by attaching an asterisk to the parameters.

The designs are identified by code numbers. For example, Plan 1/8; Tf, 8t/b;
2b means that the design is a 1/8 replicate of a full factorial experiment with 7 factors,
employing 8 treatments per block, and using 2 blocks. The order of presentation of the
designs (tables 2 to 29) is the order of increasing numbers of factors. For a given num-
ber of factors, a sequence of designs with blocks of 8 treatments is presented first, fol-
lowed by a sequence of designs with blocks of 16 treatments. Within any sequence, the
order is the order of increasing numbers of blocks.

Use of Resolution 4 Designs in Fitting First-Order Model

In general, the use of the first-order model as a prediction equation, with coeffi-
cients estimated from an experiment, requires the assumption that all second-order pa-
rameters are zero. However, circumstances might arise where the experimenter de-
sired an approximate first-order predicting equation and ignored the existence of pos-
sible nonzero two-factor interactions. He might then prefer a resolution 4 design to a
resolution 3 design because the estimates of the first-order coefficients would not then
be confounded with (biased by) two-factor interactions.

Minimum-size designs of resolution 4 are shown for 4 factors by table 2, for 5 fac-
tors by table 5, and for 6 factors by table 10. Minimum-size designs of resolution 4 for
T and 8 factors were given by Natrella (ref. 18, p. 12-18), and these designs are also
given in tables 28 and 29. Unfortunately, no success was achieved in trying to include
the designs of tables 28 and 29 in the telescoping sequences of 7- and 8-factor blocked
designs, that is, tables 21 to 27. However, the. designs of tables 28 and 29 might there-
fore be used for the very first trial of a Box-Wilson procedure, when the experimenter
believed that he would be so far from an optimum condition that a first-order model
would be a good enough approximation. After such a trial he could move to a new design
center and then elect a design capable of being sequentially expanded by blocks into de-
signs of higher order, that is, tables 21 or 25.
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Conditions for Using Resolution 3 and Resolution 4 Designs in

Estimating the Second-Order Model

If the experimenter has prior knowledge that some of the two-factor interactions are
zero, he may be able to choose the labels for his factors so that the nonzero interaction
parameters can be estimated from designs of less than resolution 5. The specific cases
are listed:

Table 2. - Plan 1/2; 4f; 8t/b; 1b. - If one of the factors (for example Xl) does not
interact with the other factors, then all the remaining interactions are estimable (table 2).
i X1 is noninteracting, the estimated parameters are Bo, Bl, Bz, B3 & 33, Bz & 323,
and B,.

Table 5. - Plan 1/2; 5f; 8t/b; 2b. - The factor believed most likely to interact with
other factors should be labeled X, because the plan (table 5) gives unconfounded esti-
mates of 314, 624, 334, and [345. K any one of X;, X,, Xg, or X does not interact
(for example, Xl) then all the remaining two-factor interactions are estimable and the
estimated parameters are B, 8y, By, B35, B3, By, Ba3s sy By Bra By P3asr P3g Poss
(13;3 4t Bi‘45), and B 45 Under previously stated assumptions, the estimates of Bl &

33 45 and 32 45 are assumed to be nothing more than random error.

Table 10. - Plan 1/4; 6f; 8t/b; 2b. - K x; does not interact with any other factor,
and if Xg does not interact with Xy, Xp, and Xg, then the parameters estimated are as
follows: Bg, Bys B Bags P3s Pase Pags Pes Pas Pgss Pogr (Blag + Plsg + Pigs + Plag)
B3qs Bss B4g> and the estimate of (3125 +Brge t 3234 + 3356) is assumed to be random
error (table 10).

Table 11. - Plan 1/2; 6f; 8t/b; 4b. - I the label X, had been given to the most
likely noninteracting factor in the design of table 10, the performance of the two augment-
ing blocks of table 11 would result in a design with all interactions estimable under the
minimal assumptions that 312, 1313, and 316 are zero.

Table 13. - Plan 1/4; 6f; 16t/b; 1b. - Assume that there are two groups of three
factors and that each factor does not interact within its group. Give the factors within
one group the labels X, X5, and Xe and label the factors of the other group Xq, Xy,
and X5. Then all the nonzero two-factor interaction coefficients (one factor from each
group) are estimable and are 313, 314, Bl 5 623, 324, 625, 336’ 346’ and 356 (table 13).

Table 18. - Plan 1/4; 7f; 8t/b; 4b. - This plan (table 18) becomes a suitable second-
order design under the assumptions that X1 does not interact with X3, X g OT XG’ and
that Xz, X5, and X.7 do not interact with each other.

Table 21. - Plan 1/8; 7f; 16t/b; 1b. - This plan (table 21) estimates two-factor in-
teractions if X,7 is noninteracting with Xl’ X2, X3, X 4 and X6, if X5 is noninteract-
ing with Xl’ Xz, X4, and X6’ if X1 is noninteracting with X2, X4, and X6’ and if
X2 is noninteracting with X6'
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Table 22. - Plan 1/4; 7f; 16t/b; 2b. - This plan (table 22) estimates all two-factor
interactions if any one of Xl, XZ’ X 4 Or X6 does not interact with the other factors of
this group.

Table 26. - Plan 1/8; 8f; 16t/b; 2b. - This plan (table 26) estimates all interactions
if X8 is noninteracting with Xl, Xz, X3, X5’ and X7, and if X3 is noninteracting with
Xy, X9, Xy, and Xg. Thus the label X8 should be given to the least interacting vari-
able and the label X3 should be given to the next least interacting variable.

Choice of Block Size

The present investigation assumes that the experimenter will wish to perform a block
of treatments, analyze the data, and then perform another block of treatments, and that
the block effects arise during the interuption of the experimenting for analyzing data (fur-
naces are overhauled, instruments are newly calibrated, etc.). Under these assumptions,
block sizes 8 and 16 are particularly appropriate for experiments on 4 to 8 factors. On
the other hand, the physical situation could limit the experimenter to smaller block sizes.
Under such limitations, other designs would have to be synthesized, and the synthesis
could be done according to rules presented in reference 12.

Another reason for using small block sizes is to protect against the hazard of miss-
ing values. If through accident, the observations from one or more treatments are miss-
ing from a block, the whole block could be rerun, especially if it is small. On the other
hand, only the missing treatments need be run, if the experimenter can say that no block
effect will arise between the new runs and the block from which observations are missing.
If the design is not severely fractionated (if the number of treatments is significantly
larger than the number of parameters estimated), methods of estimating for missing
values may be used (ref. 12 or 19).

Some attributes of the proposed designs are summarized in table 30. In the case of
4 factors, all coefficients are estimable from two blocks of size 8 and a single block of
size 16 is of no advantage in estimating the parameters of a second-order model. In the
case of 7 factors, the attainment of a resolution 5 design requires 64 treatments for ei-
ther blocks of size 8 or size 16, so that there is no clear advantage in using blocks of
size 16, With 8 factors, the minimum first-order design requires 16 treatments, and
this is the only block size presented for the problem with 8 factors. In the cases of 5 and
6 factors, the choice of a block size of 8 or 16 is particularly complex.

A comparison of the number of experimental units required in experimenting with
block sizes of 8 and 16 for 5 and 6 factors is given in table 31. The column headed
"Total number of units required’' shows that for five factors, the break-even point for
the two block sizes occurs at three repetitions of the first-order experiments., For
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six factors, the break-even point occurs for five repetitions of the first-order experi-
ments. In other words, if the experimenter believes that he will perform many cycles of
experimenting with the method of steepest ascents, he should use a block size of 8 be-
cause it uses a relatively smaller number of experimental units. On the other hand, the
block of size 16 uses a relatively smaller number of experimental units in the method of
local exploration. The block size of 16 should be used if the experimenter believes he
will spend relatively few cycles of experiments with the method of steepest ascents, less
than three cycles with 5 factors or less than five cycles with 6 factors.

Maximum economy could be sought with a mixed strategy. The experimenter could
use the block of size 8 until his intuition told him that the first-order model might not be
appropriate. He could then switch to the block of size 16, Its greater number of degrees
of freedom for ''lack of fit'' would provide better information about the validity of the
first-order model, and on switching to the method of local exploration, fewer experi-
mental units would be needed to complete the interaction model than if the smaller block
had been used. Thus with five factors, one or two experiments of the method of steepest
ascents should be performed with the small block size followed by a switch to the larger
block. With six factors, the break-even point is not reached until the fifth design center.
Furthermore, two blocks of size 8 (table 10) provide a resolution 4 design, whereas the
single block of size 16 (table 13) is only a resolution 3 design. With six factors, the best
strategy might consist of using blocks of size 8 (table 9) until interactions were suspected,
at which point the design could be enlarged to that of table 10. If no new design center
were desired, the design could then be augmented to that of table 11. If the design of
table 10 had not shown significant interactions, experimenting at a new design center
could continue with the design of table 9, but if significant interactions had been shown,
the new experimenting should begin with the design of table 13.

CONCLUDING REMARKS

The possibility of using rationally designed experiments with optimal statistical prop-
erties was considered in terms of alloy development. The Box-Wilson methods and Box-
Hunter designs of experiments are believed to be appropriate to the problem of finding
optimum conditions. Within these concepts, the appropriate designs for the estimation
of the coefficients of first-order terms in the method of steepest ascents and for the esti-
mation of the coefficients of the two-factor interactions in the method of local exploration
consist of blocked fractional two-level factorial designs. Within these considerations the
following concepts were demonstrated:

1. The total experiment needed to estimate two-factor interactions can be a two-
level fractional factorial blocked design that is minimally adequate to the purpose.
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2. The specific detailed design of the blocks can be such that just one of them is min-
imally adequate for estimating the coefficients of the first-order model.

3. The blocks can be arranged in a !'telescoping'' sequence such that observations
from the first block are retained and combined with observations from new blocks so that
all acquired observations are used cumulatively to estimate models of successively
greater generality.

4. The designs presented are appropriate to these criteria for situations involving
four to eight independent variables. Lesser or greater numbers of variables might re-
quire that experimental strategies be basically different from those of the present inves-

tigation.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, March 31, 1967,
129-03-01-03-22.

22




APPENDIX - CONSTRUCTION OF DESIGNS AND IDENTIFICATION OF
PARAMETERS ESTIMATED BY YATES' CONTRASTS

Contrast Vectors

The construction of a design begins with a listing of the treatments of a full 23 design
for a block size of 8, or with a listing of the treatments of a full 24 design for a block
size of 16. In either case, these treatments are listed in Yates' standard order (ref. 12).
The standard order for a two-level factorial experiment on factors A, B, C, . . . is
written in terms of the symbols for treatments, (1), a, abc, and so forth. The standard
order is determined by writing treatment symbols in the order, (1), a, b, ab. The treat-
ments for which C is at the high level are then ordered by multiplying the preceding
symbols by c¢ and adding on the new list. The total list becomes (1), a, b, ab, c, ac,
bc, abc. The treatments for which D is at the high level are ordered by mutiplying the
preceding list by d and appending the new symbols to the old list: (1), a, b, ab, ¢, ac,
be, abe, d, ad, bd, abd, cd, acd, bed, abed.

The design and results of an experiment can be exhibited by an array such as table 1.
The first column presents the treatment in Yates' notation and order. The second column
stands for the observed responses that correspond to treatments in the same row of the
table. The third column presents a dummy variable that takes the value one. The array
consisting of those columns headed by Xl’ Xz, X3, and X 4 1s called the design matrix.
It gives the same information as is given by the column headed ''Treatments'’.

The array beginning with the column headed XO and including all columns to the
right is called the matrix of independent variables. It gives the levels of those variables
in design units and is therefore derivable from the treatment column as given in Yates'
notation. '

As listed in table 1, the columns under X Xl’ X:Xo, and so forth, can be re-
garded as column vectors. A column headed by X1X2 is the result of multiplying ele-
ments together from like rows of X1 and X2 (This rule of multiplying X1 by X2 to
generate the column vector X1X2 differs from the definitions of scalar product and vec-
tor product in conventional vector analysis.)

Inspection of table 1 shows that when any column X]. is multiplied by itself, the re-
sult is ij = XO' This result means that far more complicated multiplications can lead
to simple results; for example,

f 2% =X X XX

(X1 XgXg) (X1 XgXy) = XK XX, = XoXoX Xy = XXy

The preceding rule for the multiplication of the column vectors is used in construct-
ing the detailed designs.
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The column vectors give the linear combination of observations (provided that they
are in Yates' order) that estimates the coefficient indicated by each column heading. Ob-
viously, the grand mean is estimated by multiplying the observations by the quantities
under X0 and summing and dividing by Zl, where in table 1, I = 4.

If the observations are multiplied by the quantities under Xl’ their sum divided by
21'1 represents the average change in response between the upper and the lower levels
of Xl' Dividing the sum by Zl gives the change in response for a unit change in Xl’ and
this quotient is the estimator b1 of the coefficient Bl of equation (5).

In a similar manner, multiplying the responses by the quantities of any column of
table 1 and dividing the sum by Zl results in an estimate of the coefficient of the term in
equation (5) that is identified by the column heading. This work is done automatically by
Yates' algorithm with results presented in the order of the column headings of table 1.

With A associated with X;, B associated with X,, and so forth, the sums resulting
from the Yates' computation will be called A, B, ABC, and so forth. The sum associated
with column X0 with be called T; with Xl’ A; with Xz, B; with X1x2’ AB; with
X2X3X & BCD; and so forth. Thus BCD is the dot or scalar product of the two vectors
Y and X2X3X 4 These sums (such as BCD) are also called contrasts. Performance of

the full 24 experiment and computation according to Yates' algorithm thus furnishes esti-
mates of coefficients of equation (5) as follows:

by = (1 /2T
by = 1/2ha
by = (1/2)B

byaq = (1/2))BCD, and so forth

5 Factors - Blocks of 8 Treatments

If the experiment is to consist of a one-fourth replicate, then X, and X, can be
assigned only combinations of levels that constitute a three-factor full factorial experi-
ment, namely, the levels of Xl, Xz, X3 and their interactions in table 1. Because all
first-order coefficients must be estimated, X4 and X5 should be set equal only to two-
factor or high order combinations. Such combinations may be chosen arbitrarily, except
that each member of the resulting full set of defining contrasts must have a number of
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factors equal to or greater than the desired resolution level R. Set X 4 -XZX3 and
X5 = X1X2X3. Then the full set of defining contrasts is

w2 _
X = X4 = ~XgXqX,

_ 2

_ w2 _
0 = X4X5 = -X; XXy

X

Negative signs are attached to all defining contrasts containing an odd number of
treatments and positive signs are attached to all defining contrasts containing an even
number of treatments. This convention ensures that the first block will be the principal
block, that is, will contain the treatment with all factors at their low level.

The properties of the design have now been fixed by the establishment of the four
identical contrast vectors, namely,
The full set of contrast vectors that thus fix the design are called defining contrasts.
They show what parameters are confounded. For example, in table 4, the parameters
that are obviously estimated by the Yates' contrasts (on division by the number of treat-
ments) are By By» Bos 312’ B3, B3 623, and B;gg. Multiplying the contrasts that pro-
vide estimates of these coefficients by the full set of defining contrasts and neglecting all
interactions of order higher than two factor shows that the confounded sets of parameters
are as given in the following table:

Product with defining contrasts | Confounded coefficients
XXX Xg) = -X,Xg By - Bys
(K)(-XpXgXy) = -X3X By - B3y
X X)X XX gX) = XgX ;5 P1a * P3s
(X3 (-XpX3Xy) = -X X, B3 - Paq
X X (X XX gX5) = XpX;5 P13 +Pas
X X3) (X XgX3Xp) = XX Boe s fe- 8
(X,X)(-KoX5X,) = X, 23 + P15 B4
(X X9X3)(-X;X3Xy) = -X X, B e
(X, XX 5) (X, XX X o) = Xg 14 +Ps
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Although there are 2h defining contrasts in the full set, only h are independent,
that is, starting with any h defining contrasts that are independent, the full set can be
generated by multiplying the independent ones in all combinations. For example, if
'XZXSX 4 and X1X2X3X5 are taken as the h = 2 independent defining contrasts, then

h

the 2 = 4 are obtained by annexing the dependent contrasts:

(-XgXgX ) (-X)X3Xy) = X,
and

Under the specifications X, = -X2X3 and Xe = X1X2X3, the levels of X, and X5 to be
attached to the Yates' ordered treatments of X, X,, and Xq can be obtained from
table 1. The signs under X2X3 are to be reversed, and they then show that X, in
Yates' order should take on the levels 1, 1, d, d, d, d, 1, 1. The signs under X1X2X3
of table 1 are left unchanged, and the levels of X5 are 1, e, ¢, 1, ¢, 1, 1, e. These
treatment levels are then affixed to the Yates' levels for Xl, Xz, and X3, to obtain the
treatments 1, ae, bde, abd, cde, acd, bc, and abce as listed in table 4.

In other words, Yates' computation is performed as if the 2g-h experiment were
only a Zl experiment with h factors ignored. The independent.defining contrasts were
formed by setting the ignored factors, one at a time, equal to some interactions among
the factors not ignored. This procedure fulfills a rule announced by Daniel in reference 5,
namely, '""The ignored letters must be ones occurring in only one alias subgroup genera-
tor [independent defining contrast]. !

If the experiment is to consist of a one-half replicate in two blocks, set X5 =
X1X2X3. Then XO = X% = X1X2X3X5. The design and estimated effects are given as
Plan 1/2; 5f; 8t/b; 2b (table 5). The defining contrasts of the single block were
-XIX 4X5, -X2X3X & and X1X2X3X5, whereas the defining contrast for the half replicate
is X X,XqX.; therefore, -X,;X X, and (-X1X4X5)(X1X2X3X5) = -X,X.X, represent
block effects. Thus in Plan 1/2; 5f; 8t/b; 2b, the contrast that estimates Bl 45 * B23 4
also estimates the block effect.

The full interaction experiment is given as Plan 1; 5f; 8t/b; 4b (table 6). Because
it is a blocked design using blocks that were partitioned according to the fractional repli-
cate contrasts of Plan 1/4; 5f; 8t/b; 1b, the parameter estimates confounded with block
effects are -3234, -3145, and 31235.
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5 Factors - Blocks of 16 Treatments
In table 1 consider a 24 experiment on Xl’ Xz, X3, and X4 and set

Therefore

3
The design is given as Plan 1/2; Bf; 16t/b; 1b (table 7). The interaction model contains
16 parameters, and these parameters can be estimated from the 16 responses of the de-
sign, if it is performed in a single block.

6 Factors - Blocks of 8 Treatments

The first-order model contains 7 parameters and the minimum fractional factorial
design contains 8 treatments. Consider the first 8 treatments of table 1 corresponding
toa 2° experiment on X, Xp, and Xg. Let X, = -X;X,, X5 = -X,X, and Xg =
+X1X2X3. Then the the full set of defining contrasts is as given for the 1/8 replicate in
table 8. These defining contrasts lead to the treatments and estimated effects given as
Plan 1/8; 6f; 8t/b; 1b of table 9.

The sequence of defining contrasts used to obtain the next two larger of the telescop-
ing fractional factorial designs is given in table 8. The corresponding treatments and
estimated parameters are given in tables 10 and 11. The interactions confounded with
blocks in the full 25 experiment (table 12) are the same as the defining contrasts used to
to construct the first block, namely, -X1X2X4, —X2X3X5, X1X2X3X6, X1X3X4X5,

-X3X 4X6’ -X X _X., and XZX 4X5X6. The coefficients confounded with blocks are there-

175762
fore the corresponding coefficients (with asterisks) in table 12.

6 Factors - Blocks of 16 Treatments
Assume that the experiment is performed on one block of 16 treatments. With ref-

erence to table 1 for an experiment on Xl’ X2, X3, and X4, let X5 = -X3X4, and X6 =
—XIXZ. Then
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2

5

- we _
Xo = Xg = X1 X Xg

= X2X2

X = X5

=X XoX3X XX

The required treatments are given by Plan 1/4; 6f; 16t/b; 1b (table 13), and the pa-
rameters estimated on dividing Yates' contrasts by 2° are also listed in table 13.

Performance of a second block of 16 treatments according to Plan 1/2; 6f; 16t/b; 2b
(table 14) results in 32 Yates' contrasts, which on dividing by 25 result in estimates of the
the parameters listed in table 14.

In table 14, the defining contrast of the fractional replicate is X1X2X3X 4X5X6. In
table 13, the defining contrasts were -X1X2X6, -X3X 4X5, and their product
X1X2X3X 4X5X6. .Therefore, in table 14 where the only defining contrast is
X1X2X3X4X5X6, the interactions -X1X2X6 and -X3X4X5 are confounded with the block
effect and aliased with each other, so that the estimator of the block effect is

(B345 + B126)-

7 Factors - Blocks of 8 Treatments

The first-order model contains 8 parameters and the minimum fractional factorial
design therefore contains 8 treatments., Consider the first 8 treatments of table 1 as an
experiment on Xl, Xz, and X3. Let X4 = -xlxz, X5 = -X1X3, X6 = —X2X3, and X7 =
X1X2X3. The corresponding complete set of defining contrasts for the 1/16 replicate is
listed in table 15. The defining contrasts for a telescoping sequence of designs consist-
ing of the 1/16, 1/8, 1/4, and 1/2 replicates are also given in table 15. The correspond-
ing designs and estimated parameters are given in tables 16 to 19.

7 Factors - Blocks of 16 Treatments

Let X5 = -x1x4, XG = X1X2X4, X,7 = X2X3X & then the complete set of defining con-
trasts are as listed for the 1/8 replicate of table 20, The defining contrasts for telescop-
ing designs consisting of 1/4 and 1/2 replicates are also given in table 20. The associ-

ated designs and estimated parameters are given in tables 21 to 23.
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8 Factors - Blocks of 16 Treatments

The first-order model contains nine parameters and the minimum fractional factorial
design therefore contains 16 treatments. Let X5 = 'XIX & X6 = X1X3X & X,7 = X2X3X &
X8 = -X2X3; then the complete set of defining contrasts for the 1/16 replicate is given by
table 24. The complete sets of defining contrasts for the telescoping designs consisting
if 1/8 and 1/4 replicates are also given in table 24. The associated designs and esti-

mated parameters are given by tables 25 to 27.
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Table 2.2 - PLAN 1/2; 4f; 8t/b; 1b -
R=4

[Xq = X X X 3%, ]

Block | Treatment | Estimated effects
1 (1) 60
1 ad Bl
1 bd 132
1 cd 33
1 ac B13 + )32 4
1 bc 323 + Bl 4
1 abed B 4

ARefs. 12 (p. 484) and 18 (p. 12-16).

TABLE 3.% - PLAN 1; 4f; 8t/b; 2b -
R=5

[Block confounding, X,X,X3X,.]

Block { Treatment | Estimated effects

(®)

1 (1) BO

2 a Bl

2 | b By

1 ab Blz

2 c 33

1 ac A3

1 be 323

2 abc 3123

2 d 34

1 ad 314

1 bd 324

2 abd ﬁ124

1 cd 334

2 acd 3134

2 bcd 3234

1 abcd 3;234

apefs. 12 (p. 429) and 18 (p. 12-10).
b sterisk denotes confounding with
blocks.




TABLE 4. - PLAN 1/4; 5f; 8t/b; 1b -

R=3
[xo = -X, XXy = X X XsXg
= XX X5 ]
Block | Treatment | Estimated effects
1 (1) Bo
1 ae By - By
1 bde 32 - 334
1 abd 312 + ;835
1 cde '33 - [324
1 acd 313 + [325
1 bec -B4 + 323 + 315
1 abce B5 - 314

TABLE 5. - PLAN 1/2; 5f; 8t/b; 2b -

R=4

[Xo = X1X2X3X5; block confounding,

-XpXgXy ]
Block | Treatment | Estimated effects
(a)
1 (1) By
1 ae By
2 be 32
2 ab 612 + B35
2 ce B3
2 ac B3+ Bes
1 be 1823 + 315
1 abce Bs
2 d ;34
2 ade Bl 4
1 bde BZ 4
1 abd B124* B3ss
1 cde 33 4
1 acd Bi3a + Pags
2 bed B334 * Plas
2 abcde B 45

aAsterisk denotes confounding with

blocks.
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TABLE 8. - DEFINING CONTRASTS, 6 FACTORS ON

BLOCKS OF 8 TREATMENTS

Source Defining contrasts
1/8 Replicate | 1/4 Replicate | 1/2 Replicate
x2 X, XX
4 %Xy
2
x2 X XX,
2
Xg XX X3Xg X XgX3Xg XX XqXg
2.2
X3X2 X XyX Xx X XgX Xs
2,2
X3Xe XX Xg
2.2
X5Xg X X5Xg
x2x2x2 | x.X,X.X XX X X
5% 2X4X5%g 2X4X5%¢g

TABLE 9. - PLAN 1/8; 6f; 8t/b; 1b -
R=3

[Xg= -X XXy = -XyX X5 =X XXX
=X XX X = -XgX (X = -XXgXg

=X2X4X5X6.]

Block | Treatment { Estimated effects
1 (1) By
1 adt By - Bay - Bgg
1 bdef Bz - /335 - /314
1 abe —{34 + 312 + 336
1 cef By - Bag = Byg
1 acde Byg + Bag + Bys
1 bed -65 + B23 + 616
1 abef Bg - B1s ~ Bag
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TABLE 15. - DEFINING CONTRASTS WITH 7 FACTORS ON BLOCKS OF 8 TREATMENTS

Source Defining contrasts
1/16 Replicate 1/8 Replicate 1/4 Replicate 1/2 Replicate
2
X4 XXXy
2
Xy X XgXg XXX
2
Xg XX oXg
2
Xq XXX 3Xq X XX3Xq
2.2
x4xg XXX Xs
2
X4Xg XXX Xg X X3X Xg XXX Xg
2.2
XoXq XX gXq
2.2
ngs X X, X:Xg
2
xgxg XX Xy X, XeXn X, XX,
XeXq X XeXq
2,22
XXsXg | XX5Xg X XXg
2,22
XXXy | XX XsXq
2,22
X4ng7 XX KeXq X,X XeXq
2,22
XsXgXq | X3XsXeXq
242,22 :
X XeXgX7 | X XoKgX jXgX Xy | -X XgXgX XXXy | -X X X5X g X5XeXq X XoXqX XXXy

TABLE 16. - PLAN 1/16; 7f; 8t/b; 1b -

R=3

[Defining contrasts given by table 15.]

Block | Treatment Estimated effects
1 W e
! adeg By - Byy - P35 - Per
1 bdfg By - Byy - Bgg - Pry
1 abef “Bg+Big+ /337 + 356
1 cefg B3 - Byg - Bpg - By
1 acdf  |-Bg+ B3+ Byg + Pyq
1 bede -36 + 323 + ﬁl'? + Bys
1 abeg  1Bq - B3y - Bos - Bg
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TABLE 20. - DEFINING CONTRASTS WITH 7 FACTORS

ON BLOCKS OF 16 TREATMENTS

Source Defining contrasts
1/8 Replicate | 1/4 Replicate | 1/2 Replicate
X2 X X X,
X XXX Xs | X1XXeXe
x5 X X3X g Xq
X235 | XX
X% | XX XXXy | XXX XXy
XgX7 | XXgXeXy
XEEXT | KX XsXeXy | KoK XKeXq | XX XXXy

R

=3

[Defining contrasts given in

table 20.]

TABLE 21. - PLAN 1/8; 7f; 16t/b; 1b -

Block | Treatment

Estimated effects

(1)
aef
bfg
abeg

[

cg
acefg
bef
abce

[

defg
adg
bde
abdf

e

cdef
acd
bcdeg
abedfg

[ e T

Ao

By Pys
By - Bse
Bra+ Pag
B3

Bi3 + Bgn
Bas + Byy
-Bgq

By - By5

Bg - Bys

B3q+ Ban
-Bss

By

B3 + By

-Bg + B14 + Bag
Bay+ By * Ban

43
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TABLE 22.2 - PLAN 1/4; Tf; 16t/b; 2b - R=4

[Deﬁning contrasts given in table 20; block confounding, -XIX 4Xs.]

Block | Treatment | Estimated effects || Block | Treatment | Estimated effects
®)
1 (1) 60 2 €g 35
2 afg Bl 1 aef 815
1 bfg [32 2 bef [325
2 ab 312 + /346 1 abeg -33.7
1 cg 33 2 ce 635
2 acf 613 1 acefg -B27
1 bef 623 2 bcefg '31'7
2 abeg -357 1 abce -67
2 df By 1 defg Bys
1 adg Bra+* Pag 2 ade Bla5 + 356
2 bdg Bag + Bre 1 bde Boss * B1se
1 abdf 36 2 abdefg B56
2 cdfg Bag 1 cdef -Bgq
L acd B134 * Pase 2 acdeg -Paa7 - Bren
2 bed Ba3s+ Br3e 1 bedeg -B1a1 ~ Paen
1 abcdfg 336 2 abcdef —347

ARef. 4 (p. 20).
Asterisk denotes confounding with blocks.
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TABLE 26. - PLAN 1/8; 8f; 16t/b; 2b - R=3

[Defining contrasts given in table 24; block confounding, -XIX 4X5.]

Block | Treatment | Estimated effects ||[Block | Treatment| Estimated effects
(a)
1 1) Bo 2 eg By
2 afg By 1 aef Bis * Prg
1 bgh Bz - 338 2 beh 325
2 abfh 612 1 abefgh -637
1 cfgh - B3 - 328 2 cefh 335
2 ach 613 +B 46 1 acegh —327
1 bef -Bg + Bas 2 beefg -Bgg - 317
2 abeg -657 - 318 1 abce -67
2 df By 1 defg Bys
1 adg B4+ B3 2 | ade Bls * B356 + Birs
2 bdfgh 324 1 bdefh 'B67
1 abdh Pgg 2 | abdegh | -f3uq - Bseg - Brer
2 cdgh B3y * Big 1 | cdeh B35+ B1s6 * Pers
1 acdfh 66 2 acdefgh 356
2 | bed -Bag 1 | bedeg  |-Bygq - Pagr - Pyss
1 abcdfg Bog 2 abedef -Baq

a N P . Py . .
%A sterisk denotes confounding with blocks.




-§Y201q Y}1A SUTPUNOJUOD §3j0UP HEIIAIEV,

(12 'd) ¥ "By
898y - L9%g_ | jopoqe | 3 88g- | spoqe 1 Lvg. | yopoqe ¢ ||898g - LS¥g- | uspoqe | ¥
8L%y | yspoq | ¥ 8Elg- | ymwoq g L¥lg- | 8epoq 1 vEdy pogq 2
8Ly | ysppoe | 2 8€%9- | ypoe 1 L¥2g. | 3opoe g vely poe ¥
8Ly jpo | v || 88+ %8y 380 ¢ || 8L3g +S¥Eg|  yopo 1 Veg|  uspo z
8%g- | Sppqe | ¢ 8g- PaE y 11899 - L¥Eg- | ySepqe z 89g-|  ypae 1
8STg. | yppa | 1 81g- |  uswpa 2 vy wa | ¥ ¥y spa | ¢
89%y- | wpope | ¢ 8%g- | uspe ¥ Svlg ape 2 ¥lg spe . 1
8LEg + 997y 810p 1 9y P z Shg|  ysep ¥ £] wp £
L9g-| ypoqe | v | B¥%g-L9%-| upqe ¢ bg-| eoqe | T | LSy.|  Boqe | ¢
LTy | spoq | 3 9€sy »q 1 Llg-| yBaoq g €2g yoq ¥
L9%g.|  seoe | ¥ 9Ely »E g L2g. |  y3aoe 1 Ely we | 2
8L7g + 98¢ ypo | 2 98y usp 1 Sy a9 ¢ €y | ¥
8Gvg . L9%g- |  ySpeqe | 1 8g-|  wae | 2 Leg-|  Boqe | ¥ ey @ | ¢
94ty Pa | ¢ 9%y s, | ¥ Sty waq | 2 ¢y wa | 1
961y pe | 1 91y Sre 2 Sy e | ¥ Iy e | ¢
98y yspe g 9 u ¥ Sg %o z Og 1) 1
C)] C)] (@
gj09130 81093J0 §199539 £199]19
poemmsE | jueumzedl | Yooral| perewmsm |jweuneerl | Fooig|| perewmsE |uewneall ] NOOIF| PFENNSH | OUNERIL | MO0

[9x%xx- Ox?xEx'x Sx"x'X- ‘BUPUNOOD ¥00Iq ‘g AT UT UBATS 83STINIOD supurzeq]

g=d- % ‘Q/191 ‘I8 ‘¥/1 NVId - 5 L¢ ITEVL

48



"(81-21 *d) 81 pue (98 'd) gI 'SJoY,

49

82y 4 L& + 9y 1 Sy | ySgopoqe | 1 "(81-21 "d) 81 pue (98% "d) ZT 'SIU,
9
o woa | 1 Ly, 915 4 S¥g] sepoqe | 1
g po |1 9 woq | 1
Ly 4 81y 4 98y . ¥Ey Sepd | 1 LeTy | LOFy , 988, | SHTy 4 LEZy , 9T14 , ELg poe | 1
) LSy 4 ¥Egy 4 92y Sapo 1
g Spqe I
88y 4 Llg 4 98y 4 ¥Tg yopq | 1 byl spqe | 1
9y + 88y 4 L2y 4 Vlg ppe | 1 L1y, 98y 4 VT ooq | 1
£} usp | 1 13 4 95 4 iy wpe | 1
o vy P | 1
) soqe | 1
BLy + 97g + STy 4 82y udoq | 1 sy|  ooqe | 1
L9y + 8%y . STy . Elg Spe | 1 9%y 4 STg 4 €3y 80q | 1
&y yeo |1 19g 4 93y 4 Elg spe | 1
&y 0 | 1
89y + L¥yg 4 S8y 4 C1y wge | 1
eg 3pq | 1 Lby 4 S6g 4 Ty e | 1
Mu ySoe 1 (& 8104 1
g (1) 1 lg Sow 1
Og m | 1
sjoefie pajewmisy | juewyesx], | yoorg
§709]J9 parewnisy Jueurjeal], | yoorg
[Bxtx®xPx=BxbxSxly =
8195 S o g9y Bop = Bl gy =
mxoww XX =X XX = mxmx¢wN~w - [x9%9%%x = LxOxtxlx - bxdxPxCx -
RORERIR = ROCH X = KOXTHK = 9xSxPxlx = bxPxPxTx = OxPxExPy = SxExPxl = Ox]
¥x'x°x = xxPx!x = 8xPxfxx =
LxPxCxlx=9% % xlx = Sx¥xxx = %] p=d - q1 ‘a/191 3L ‘8/1 NV'Id - '8¢ TIVL

p=d-91 ‘q/191 ‘I8 ‘91/1 NV'1d - ,,"62 ATAVL



50

TABLE 30. - ATTRIBUTES OF RECOMMENDED DESIGNS

Table | Replication |Factors, | Treatments |Number | Resolution, | Number of Number of

g per block of R two-factor estimable

blocks interactions, | two-factor

g(g - 1)/2 | interactions
(@)
2 1/2 4 8 1 4 6 0
3 Full 4 8 2 5 6 6
4 1/4 5 8 1 3 10 0
5 1/2 5 8 2 4 10 4
6 Full 5 8 4 5 10 10
7 1/2 5 16 1 5 10 10
9 1/8 6 8 1 3 15 0
10 1/4 6 8 2 4 15 0
1 1/2 6 8 4 4 15 9
12 Full 6 8 8 5 15 15
13 1/4 6 16 3 15 9
14 1/2 6 16 5 15 15
16 1/16 7 8 1 3 21 0
17 1/8 7 8 2 3 21 0
18 1/4 7 8 4 3 21 11
19 1/2 7 8 8 5 21 21
21 1/8 7 16 1 3 21 1
22 1/4 7 16 2 4 21 15
23 1/2 7 16 4 5 21 21
25 1/16 8 16 1 3 28 ¢
26 1/8 8 16 2 3 28 11
27 1/4 8 16 4 5 28 28
28 1/8 7 16 1 4 21 \
29 1/16 8 16 1 4 28 0

20nly unconfounded two-factor interaction estimators are counted.




TABLE 31. - COMPARISON OF TOTAL TREATMENTS (EXPERIMENTAL UNITS)

REQUIRED WHEN FIRST BLOCK IS PERFORMED TO ESTIMATE FIRST-ORDER

MODEL AT STATED NUMBER OF DESIGN CENTERS AND INTERACTION

EXPERIMENT IS PERFORMED ONLY AT FINAL DESIGN CENTER

Factors | Design Treatments for |Treatments for completion] Total number of
centers| first-order model of interaction model units required
for '
first- | Blocks of |Bincks of| Blocks of | Blocks of Blocks of| Blocks of
order size 8 size 16 size 8 size 16 size 8 size 16
model
5 1 8 16 24 0 32 16
5 2 16 32 24 0 40 32
5 3 24 48 24 0 48 48
5 4 32 64 24 0 56 64
6 1 8 16 56 16 64 32
6 2 16 32 56 16 72 48
6 3 24 48 56 16 80 64
6 4 32 64 56 16 88 80
6 5 40 80 56 16 96 96
6 6 48 96 56 16 104 112
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Figure 3. - Box-Wilson methods.
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“The aeronautical and space activities of the United Statex shall be
conducted so as to contribute . . . to the expansion of buman know-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of
importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribu-
tion because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated
under a NASA contract or grant and considered an important contribution to
existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA
activities. Publications include conference proceedings, monographs, data
compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech-
nology used by NASA that may be of particular interest in commercial and other
non-gerospace applications. Publications include::Fgch Briefs, Technology '_
Utilization Reports and Notes, and Technology Snﬂxey’i. B :

t ‘%; " "«“ . B
Details on the availability of these publications may be obfcined from.

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546




